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Genetic Algorithms and Classifier Systems: Foundations
and Future Directions

John H. Holland

The University of Michigan

Abstract

Theoreatical questions about classifier systems, with rare exceptions, apply
equally to other aduplive avolinmar onetworks (ANNs) such as the
oonnectionist models of cognilive psychology, the immune system, economic
systems, ecologies, and genetic systems. This paper discusses pervasive
properties of ANNs and the hinds of mathematics relevant to questions
cbout these properties. It discusses relevant functional extensions of the
basic classifier system and extensions of the extant mathematical theory.
An appendin briefly reviews some of the key theorems about oclassifier
systiems.

Classifier systems are examples of e broad class of systems
sometimss called sdaptsive nonlnesr networks (ANNs, hereafter) .
Broedly characterized, classifier systems, and ANNs in general,
consist of a large number of units that (1) interact in a
nonlinear, competitive fashion, and (2) are modified by various
operators so that the systermn as whole progressively adapts to its
environment. Typically an ANN confronts an environment that
exhibits perpstual novelty and it can function (or continue to
exist) only by making continued adaptations to that
environmerit. Becauss ANN/environment interactions are
complex, emospt in artificially constrained cases, an ANN usually
operates far from equilibrium. ANNs form the core of areas of
study as diverse as cognitive psychology, artificial intelligence,
economics, immunogenesis, genetics, and ecology.

Foundatrne

Classifier systems are guite typical ANNs so that questions
about classifiers, suitably translated, are typically questions about
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ANNs and wice sersa. To carry out the translation 1t 1s
necessary to identify the counterparts in other ANNs of the
message—processing rules, called c/sxwferx that are the unuts of
classifier is necessary to identify the counterparts in other ANNs
of the message—processing rules, called «/ssvfery, that are the
units of classifier systems. For example: In genetics, the
counterparts are chromosomes; 1n game theory and economics,
they are (rule-defined) strstegies; in immunogenesis, antigens; in
connectiorust versions of cognition, (formally—defined) neurons;
and so on. Under such translation it is relatively easy ‘o
identify a range of important theoretical questions that apply to
classifier systems in particular and ANNs in general:

[These questions, and some of the ensuing discussions, are
presented assuming that the reader has some familarity with
Holland et al. [1986] or Holland [1975]. There is simply no:
enough room here to define the terms; a reader familiar with
the literature concerning some other ANN should be able to make
the relevant translation in most cases. )

(1) What parameters and operators favor the emergence of
stable hierarchical covers such as default hiererchies, internal
models, and the like (via an increased diversity of units and
progressively more complicated interactions between them)?

(2) Are the familiar ‘“ecological® interactions —- parasitism,
symbiosis, competitive exclusion, etc. —— a common feature of al
parallel, nonlinear competitive systems?

(3) Are multi-functional units (units that can serve in several
contexts) the major stepping-stone employed by all ANNs in
making adaptive advances? ‘

(4) What environmental conditions favor recombination,
imprinting, _triggering, and other constrained or biased procedures
for generating new trials (rules, chromosomes, organizational
structures, etc.)?

(5) Wha® environmental conditions favor tracking vs
averaging, exploration vs. exploitation, etc.?

(6) What combinations of operators yield implicit parallelism?

Traditional mathematics with its reliance upon lneanty,
convergence, fixed points, and the like, seems to offer few towls
for studying such questions. Yet, without a relevant



mathematical framework, there is less chance of understanding
ANNs than there would be of understanding physical phenomena
in the absence of guwdance from theoretical physics. A
mathematics that puts emphasis on combinatorics and
competition between parallel processes is the key to understanding
ANNs. wWhat seems startling when one wuses differential
equations, where the emphasis is on continuity, is comonplace in
a programming or recursive format, where the emphasis 1s upon
combinatorics. (Consider, for example, the chactic regimes that
are so unexpected in the context of differential equations, but are
an everday occurrence, in the guse of biased random number
generators, in the programming context.)

Because classifier systers are formally defined and
computer-oriented, with an emphasis on combumation and
comnpetition, they offer a useful test-bed for both mathematical
and simulation studies of ANNs. We already have some theorems
that provide a deeper understanding of the behawvior of classifier
systems (see the Appendix), and simulations suggest a broader
class of theorems that delineate the conditions under which
internal models (q-morphisms) emerge in response to complex
environments (kolland [1986b]) .

By putting classifier systems in a broader context, we can
bring to bear relevant pieces of mathematics from other studies.
For instance, in mathematical economics there are pieces of
mathematics that deal with (1) hierarchical organization, (2)
retained earnings (fitness) as a measure of past performance, (3)
competition based on retained earnings, (4) distribution of
earnings on the bams of local interactions of consumers and
suppliers, '(5) taxation as a control on efficiency, and (6) division
of effort between production and research (exploration versus
exploration). Many of these fragments, mutatis mutandis, can
be used to study the counterparts of these processes in other
ANNs.

As another example, in mathematical ecology there are
pieces of mathematics dealing with (1) niche exploitation (models
exploiting environmental opportunities), (2) phylogenetic
hierarchies, polymorphusm and enforced diversity (competing
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subsysteras), (3) functional convergence (similarities of subsystem
organization enforced by environmental requirements on payoff
attainment), (4) symbiosis, parasitism, and mimicry (couplings
and interactions in a default hierarchy, such as an increased
efficiency for extant generalists simply because related specialists
exclude themn from some regions in which thev are inefficient),
(5) food chains, predator-prey relations, and other energy
transfers (apportionment of energy or payoff amongst component
subsystems), (6) recombination of multifunctional co-adapted sets
of genes (recombination of building blocks), (7) assortative
mating (biased or triggered recombination), (8) phenotypic
markers afrecting interspecies and intraspecies interactions
(coupling), (9) ‘founder® effects (generalists giving rise to
specialists), and (10) other detailed commonalities such as
tracking versus averaging over environmental changes
{compensation for environmental variability), allelochemicals
(cross-inhibition), linkage (association and encoding of features),
and stil others. Once again, though mathematical ecology 1s a
young science, there is much in the mathematics that has been
developed that is relevant to the study of other nonlinear systems
far from equilibrium.

The task of theory is to explain the pervasiveness of these
features by elucidating the general mechanisms that assure their
emergence and evolution. Properly applied to classifier systems,
or to ANNs in general, such a theory militates against ad hoc
solutions, assuring robustness and adaptability for the resulting
orgaruzation. One of the best ways to insure that the
mechanisms investigated are general is ‘to look over your
shoulder® frequently to see if the mechanisms apply to all ANNs.
This view is sharpened if we pay close attention to features
shared by all ANNs:

(1) Hewarchica! arymnisstrian.  All ANNs exhibit an hierarchical
organization. In living systems proteins combine to form
organelles, which combine to form cell types, and so on, through
organs, orgarusms, species, and ultimately ecologies. Economies
involve individuals, departments, divisions, comparues, economic
sectors, arnd so on, untid one reaches national, regional, and
world economies. A sirmular story can be told for each of the
areas cited These structural similanties are more than super-
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ficial. A closer look shows thal the hierarchies are constructed
on a "building block® principle: Subsystems at each level of the
hierarchy are constructed by combination of small numbers of
subsystems from the next lower level. Because even a small
number of building blocks can be combined in a great variety of
ways there is a grzat space of subsystems to be tried, but the
search 1s biased by the building blocks selected. At each level,
there is a continued search for subsystems that will serve as
suitable building rlocks at the next level.

(2) CGmpetition. A still closer look shows that in all cases the
search for building blocks is carried out by competition in a
population of candidates. Moreover there is a strong relation
between the level in the hierarchy and the amount of time it
takes for competitions to be resolved —— ecologies work on a much
longer time—scale than proteins, and world economies change
much more slowly than the departments in a company. More
carefully, if we associate random variables with subsystem
ratings (say fitnesses), then the sampling rate decreases as the
level of the subsystem increases. As we will see, this has
profound effects upon the way in which the system moves
through tlie space of possibilities.

(3) Gume-like systenmyentvironment  interaction. An ANN
interacts with its environment i1 a game-like way: Sequences of
action ("moves") occasionally produce nssw¥ special inputs that
provide the system with the wherewithall for continued existence
and adaptation. Usually payoff can be treated as a sxmple
quantity (energy in physics, fitness in genetics, money in
econornics, winnmngs in game theory, reward in psvchology, error
in control theory, etc.) It is typical that payoff is sparsely
distributed in the environment and that the adaptive system
must compete for it with other systems in the environment.

(4) ZEsphotaton of regulsrities. The environment typically
exhibits a rangs of regularities or nn/ac that can be exploited by
different action sequences or sfrafegane As a result the
environment supports a variety of processes that interact in
complex ways, much as in a mvulti~person garne. Usually there
is no super-process that can outcompete all others so an ecology
results (domains in physics, interacting species in ecological
genetics, companies in  economics, cell assemblies in
neurophysiological psychology, etc.). The very complexity cof
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these interactions assures that even large systems over long time
spans can have explored only a minuscule range of possibilities.

Even for rnuch-studied board games such as chess and go this is
true; the not so simply defined “games” of ecological genetics,
economic competition, immunogenesis, CNS activity, etc., are
orders of magnitude more complex. As a consequence the
systerns are always far from any optimum or equilibrium
situation.

(5) ZAaphwation o expéutaticn.  There is a tradeoff between
cxpbvatnr and expyovtstnwr.  In order to explore a new niche a
system must use new and untried action sequences that take it
into new parts (state sets) of the enviroment. This can only
occur at the cost of departing from action sequences that have
well-established payoff rates. The ratic of exploraticn to
exploitation in relation to the opportunities (niches) offered by the
environment has much to do with the life history of a system.

(6) Zracking o> gwwvwszzy  There is also a tradeoff hetween
‘tracking® and ‘“averaging". Some parts of the environment
change so rapidly relative to a given subsystem's respcnse rate
that the sub—system can only react to the average »ffect; in
other situations the subsystem can actually change fast enough to
respond “move by move". Again the relative proportion of these
two possibilities in the niches the subsystern inhabits has much to
do with the subsystem's life history.

(7) MNonknewrits. The value (“fitness®) of a given combination of
building blocks often cannot be predicted by a surnming up of
values assigned to the component blocks. This nonlinearity
(commonly called agvctsss in genetics) leads to co—adapted sets
of blocks (aiimirs ) that serve to bias sampling and add additional
layers to the hierarchy.

(8) thupling. At all levels, the competitive interactions give rise
to coun 3 of the familiar interactions of population biology
-— s , perasitism , competitive exv/usian , and the like.

(9) Guneralists and specralists.  Subsystems carn often be usefully
divided into gmneralstc (averaging over a wide variety of
situations, with a consequent high sampling rate and high
statistical confidence, at the cost of a relatively high error rate
in individual situations) and spmcsalisée \rescting to a restricted
class of situations with a lowered error rats, boughu at the cost
of a low sampling rate).



(10) Muwitifunctianalits: Subsystems often exzhibit multi-
functionality in the sense that a given combination of building
blocks can usefully exploit quite distinct niches (environmental
regularities), typically with different efficiencies.  Subsequent
recombinations can produce specializations that emphasize one
function usually at the cost of the other. Extensive changes in
behavior and efficiency, together with extensive adaptite
redistry, can  result from recombinations involving these
multifunctional founders.

(11) /ntarns/ models.  ANNs usually generate implicit internal
models of their environments, models progressively revised and
improved as the system accurmulates experience. The systemns
/aarn. Consider the progressive improvements of the immune
systemm when faced with antigens, and the fact that one can
infer much about the system's environment and history by
looking at the antigen population. This ability to infer something
of a system's enwvironment and history from its changing internal
organization is the diagnostic feature of an implicit internal
model. The models encountered are usually preeriptite —— they
specify preferred responses to given environmental states —-- but,
for more complex systemns (the CNS, for example), they may
also be more broadly pradictsrm specifying the results of
alternative courses of action. The relevant mathematical concept
of a model of process—like transformations is that of a Az
me x72. Real systems almost never admit of models meeting
the regquirements for a homomorphism (“commutativity of the
diagram®), but there are weakenings, the so-called g—rmwpiusms
(quasi—hamomerphsmd. The origin of a hierarchy can be looked
upon as a sequence of progressively refined g-morphisms
(specifically q-morphisms of Markov processes) based upon
observation:

Functxonal Ertansions.

The foregoing questions and cormmmonalities, together with
some of the problems already encountered in simulations, have
already suggested extensions of the standard definitions (as in
Holland [1980]) of classifiers systems.

One important change involves the way bids are used in
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deterrmuning the winners of competititions for activation. The
standard way of doing this is to calculate a &J = [bid
ratio]s[strength]. Under this arrangement, the local fized points
of classifiers are such that a generalist and a specialist active in
the same situations will come to bid the same amount (because
the strength of the generalist increases to the point of
compensating for its smaller bid ratio, see the Appendix). This
goes against the dictumn that specialists should be favored in a
competition with generalists. To compensate for this an effaéioe
Lnd  1s calculated by reducing the #Za7 in proportion to the
generality of the classifier producing the bid. The affx-f/re fudis
then used 1n deterrmuninig the probabiity that the classifier
generating it is one of the winners of the competition. If the
classifier wins it must pay the bid, n2of the effective bid, to its
suppliers under the bucket brigade. Thus, the local fixed points
are not changed, but specialists an* favored in competition with
generalists. This change goes a long way toward reducing
instabilities in emergent default hierarchies. (We are still
exploring the effects in simulations and, at the level of theory,
the resulting modifications in global fixed points).

A related change concerns the method of determining a
classifier's probability of producing offspring, its fitness, under the
genetic algorithm. The higher strength of a generalist at its local
fixed point greatly favors it in the production of offspring, and
simulations indicate that this overbiases the evolution of the
system toward the offspring of generalists. The simplest way of
compensating for this is to make the fitness proportional to [bid
ratio]*[strength] rather than strength alone. In intuitive terms,
this makes the fitness proportional to the classifier's potential for
affecting the system (its bid can be thought of as a “phenotypic”
effect), rather than its reserves (strength is a quantity
determined by its ‘genotypic® fixed-point). We have yet to
cartry out an organized set of simulations based on fitness
so-determined .

Sirnulations have also revealed two other effects worth
systematic investigation. The first of these is the ‘fucussing’
effect of the size of the message list (see R. Riclo's paper in this
Proceedings) In effect, a small message list forces the system to
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concentratée on a few factors in the current situation. Clearly
there is the possibility of making the size of the message list
depend upon the “urgency” of the situation. For example, during
"lockahead® the message list's size can be quite large to encourage
an exploration of possibilities, while at “execution® time the size
can be reduced to enforce a decision. Clearly, the system can
use classifiers to control the size of the message list. This makes
the size dependent upon the system's ‘reading” of the current
situation, and the ‘reading” is subject to long—term adaptive
change under the genetic algorithm.

A second simple effect is to revise the definition of the
environment, or equivalently the definition of the system's speed,
so that typical stimuli persist for several time-steps. (This
corresponds to the fact that the CNS operates rapidly relative to
typical changes in its environmeant —- usually, milliseconds vs.
tenths of a second.) The resulting "persistence’ and “overlap" of
input messages makes it much easier for the classifier system to
develop causal models and associative links (see below). As yet,
to my knowledge, no simulations have been built along these
hines.

At a much more general (and speculative) level, use of
tEgered  genetic operators provides a major extension of genetic
algorithms.  Triggering amounts to invoking genetic operators
with selected arguments, when certain pre-defined conditions are
satisfied.

As an example of a triggering condition consider the
following: °‘Only general classifiers that produce weak bids are
activated by the current input message.” When this condition
occurs it 18 & Ngn that the system hus little specific information
for deslmg with the current environmental situation. Let this
condition ®igger a cross between the input message and the
condition parts of some of the active general rules. The result
will be plausible new rules with more specific conditions. This
amounts to a bottom-up procedure for producing candidate rules
that will automatically be tested for usefulness when similar
situations recur.



As another ezample of a triggering condition consider: “Rule C
has just made a large profit under the bucket bngade. ”
Satisfaction of this condition signals a propitious time to couple
the profitable classifier to its stage—setting precursor. An
appropriate cross between the message part of a rule C, active on

the immediately preceding time—step -- the precursor -- and
the condition part of the profit—-making successor can produce a
new pair of coup/ad rules. (The trigger is not activated if Cj is

already coupled to C). The coupled, offspring pair models the
state transition mediated by the original pair of (uncoupled)
rules. Such coupled rules can serve as the building blocks for
models of the environment. Because the couplings serve as
"bridges® for the bucket brigade, these building blocks will be
assigned credit in accord with the efficacy of the models
constructed from them. Interestingly enough there seems to be
a rather small number of robust triggering conditions (see Holland
et al. [1986])), but each of them would appear to add
substantially to the responsiveness of the classifier system.

Tags are particularly affected by tnggering conditions tha‘
provide new couplings. Tegs serve as the glue of larger systems,
providing both associative and temporal (model-building) pointers.
Under certain kinds of triggered coupling the message sent Ly the
precursor in the coupled pair can have a “hash-coded® section
(say a prefig or suffix). The purpose of this hash-coded tag is to
prevent accidental eavesdropping by other classifiers -- a
sufficient number of randomly generated bits in the tag will
prevent accidental matches with other conditions (unless the tag
region in the condition part of the potential eavesdropper consists
mastly #'s). If the coupled pair proves useful to the system then
it will have further offspring under the genetic algorithm, and
these offspsing often will be coupled to other rules in the systemn.
Typically, the tag will be passed on to the offspring, serving as a
common element in all the couplings. The tag will only persist if
the resulting cluster of rules proves to be a useful “subroutine”.
In this cass, the “subroutine’ can be °called” by messages that
incorporate the tag, because the conditions of the rules in the
cluster are satisfied by such messages.
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in short, the tag that was intially destermined at randorn
now "names® the developing subroutine. It evsn has a sz
In terms of the actions 1t calls forth. Morecver, the tag is
subject to the same kinds of recombination as other parts of the
rules (it is, after all, a schema). As such it can serve as a
building biock for other tags. It i1s as if the systern were
inventing symbols for its internal use. Clearly, any simulation
that provides for a test of these ideas will be an order of
magnitude more sophisticated than anything we have tried to
date. Runs involving hundreds of thousands of time—steps and

thousands of classifiers will probably be required to test these
ideas.

Support is another technique that adds considerably to lhe
systemn's flembility. Basically, support is e technique that enables
the classifier systern to in‘egrate many pieces of partial
information (such as several views cf a partially obscured object)
to arrive at strong conclusions. Suppart is a quantity that
travels w7t/ messages, rather than being a counterflow as in
the case of bids. When a classifier is satisfied by ssveral
messages from the message list, each such message adds its
support into that classifier's supnvt untar Unlike a classifier's
strength, the support accrued by a classifier lasts for only the
time-step in which it is accumulated. That is, the support
counter is reset at the end of each time—step (other techniques
are possible, such as ¢ long or short half-life). Suppcrt is used
to modify the size of the classifier's bid on that time—step; large
support increases the bid, small support decreases it. If the
classifier wins the hidding competition, the message it posts
carries @ support proportional to the size of its bid. The
propagationr of support over sets of coupled classifiers acts
somewhat like spreading activetion (sse Anderson [1983]), but it
is much milwe directed. It can bring associations (coupled rules)
into play While serving its primary mission of integrating partial
information (messages from several weakly-bidding, general rules
that satisfy the same classifier).

In addition to these broadly conceived extensions, there are
more special extensions that may have global consequences,
particularly in respect to increased responsiveness and robustness.
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One of these concerns a simple redefinition of classifiers. The
standard definition of a Z-condition classifier requires that e/
condition be satisfied by some message on the message list, in
effect an AND, requiring a message of type X and a message of
type Y. It is a simple thing to replace the implicit AND with
other string operators, e.g. a bit-by-bit AND or a hinary sum of
the satisfying messages, which 1s then passed through as the
outgoing message. This extension has been implemented, but has
not been systematically tested.

Other simple extensions impact the functicning of the genetic
algorithm. It is easy to introduce, in the string defining a
classifier, punctustion marks that bias the probability of
crossover (say crossover is twice as likely to take place adjacent
to a punctuation mark). These punctuation marks are not
interpreted in executing the classifier, but they bias the form of
its offspring under the genetic algorithm. Punctuation marks can
be treated as alleles under the genetic algorithm, subject to
mutation, crossover, etc., just as the other (function-defining)
alleles. Thnis ensures that the placement of punctuation marks is
adaptively determined. Similarly one can introduce smatug fag
that restrict crossover to classifiers with similar tags; again the
tags, as part of the classifier, can be made subject to modi-
fication and selection by the genetic algorithm.

Finally, there are two broad ranges of investigation, far
beyond anything we yet understand either theoretically or
empirically, that offer intriguing possibilities for the future. One
of these stems from the fact that classifier systems are
general-purpose. They can be programmed initially to implement
whatever expert knowledge iz available to the designer; learning
then allows the systern to expand, correct errors, and transfer
in‘ormation from ons domain to another. It is important to
provide ways of instructing such systems so that they can
generats rules ~- tentative hypotheses -- on the basis of advice
It 1s also important that we understand how lookahead and
virtual explorations can be incorporated without disturbing other
activities of the system. Little has been done in either direction.

The other realm of investigation concerns fully-directed rule
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generation. In a precursor of classifier systems, the fruvadcast
fangusge (Holland [1975]), provision was made for the genera-
tion of rules by other rules. With minor changes to the
definition of classifier systems, this possibility can be
reintroduced. (Both messages and rules are strings. By enlarging
the message alphabet, lengthening the message string, and
introducing a special symbol that indicates whether a string 1s to
be interpreted as a rule or a message, the task can be
accomplished.) With this provision the system can invent its
own candidate operators and rules of inference. Surwvival of these
meta- (operator-like) rules should then be made to depend on
the net usefulness of the rules they generate (much as a schema
takes it value from the average value of its carriers). It is
probably a matter of a decade or two before we can do anything
useful in this area.

Mathamatoal Extensrvis.

There are at least two broader mathematical tasks that
should be undertaken. One is an attempt to produce a general
characterization of systems that exhibit /mplcyt parsl/alisn Up
to now all such attempts have led to sete of algorithms that are
easily recast as genetic algorithms -- in effect, we still only
know of one example of an algorithm that exhibits implcit
parallelism.

The second task involves developing a mathematical
formulation of the process whereby a system develops a useful
internal model of an environment exhihiting perpetual noveilty.
In our (preliminary) experiments to date, thess models typically
exhibit a “(tangled) hierarchical structure with asscciative coup-
lings. As mentioned earlier, such structures can be characterized
mathematizally as quasi~homomorphisms (soe Holland et al.
[1986]). The perpstual noveity of the environment can be
characterized by a Markov process in which each state has a
recurrence time that is large relative to any feasible observation
time. Considerable progress can be made along these lines (see
Holland [1986b]), but much remains to be done. In particular,
we a need to construct an interlocking set of theorems based on:
(1) a more global set of fixed point theoremns that relates the
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strengths of classifiers under the bucket brigade to observed
payoff statistics;

(2) a =&t of theorems that relates building blocks ezploited by the
"slow" dynamics of the genetic algorithm to the sampling rates
for rules at different levels of the emerging default hierarchy
(more general rules are tested more often); and

(3) a set of theorems (based on the previous two sets) that detail
the way in which various kinds of environmental regularities are
exploited by the genetic algorithm acting in terms of the
strengths assigned by the bucket brigade.

Aperndix,

A simplified version of the fundamental theorem for genetic
algorithms can be stated as follows (for an explanation of terms,
see Holland [1975] or Holland [19686a]).
Theorem (/miplnut paraifelivn ). Given a ftness functon
u: (0,1} K— Raw/c™ a popwlatian B(t) of M strings drawn from the
set {0,1}%, and any <hema S € (0,1,9)K defining a hyperplane in
(0,1,

M (t+1) 2 u’ (t)egM,(t),
where M,(t+1) is the expected number of instances of s in
B(t+1),

ws(t) = Z‘boss‘mt:@e(t)
is the average observed fitness of the instances of schema s in
B(t), and

€g = (1-(kg=1IP o0/ (k-1)),
is a ‘copying error® induced by crossover, where P__ . is a
constant of the genetic algorithm (often P, . = 1) giving the
proportion. of strings undergoing crossover in a given genera-
tion, and k,~1 is the number of crossover points between the

outermost defining symbols of s € (O.I,!}k.

u(b)/Mg(),

Under interpretation, the implicit parallelism theorem says
that the sampling rate for &t schema with instances in the
population is expected to increase or decresse at a rate specified
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by its observed average fitness, with an error proportional to its
defining length.

Theorem (Spwfup ). The number of schemas processed with
an error < € under a genetic1 algorithm considerably exceeds M
for a population of size M = 272k where € = k'/k.

Theorem (Buciet hrjgade Jocal firad~-punt ). 1f, under the
bucket brigade algorithm, I. is the long-term average income
(after taxes) of a classifier C, and r. is its bid-ratio, then its
strength S_ will approach 1 /r. .

Theorem (g-marphism parsimans ; for definitions, cee Holland
et al. [1986]). A g-morphism of n levels, in which each
successive level uses k or fewer additional variables to define
exceptions to the previous level, and in which the rules at each

ievel are correct over at least a proportiun p of the instances
satisfying them, requires no more than

Zjnzlk(i-p)l“ rules. (A homomorphism defined on nk variables

requires 2"K rules). For n=10, k=2, p=0.5, the q-morphism
requires fewer than 212 rules, while a corresponding homo~
morphism would require 220 rules; that i, the homomorphism
would require at least 256 times as many rules as the
g-morphism.
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